Texas Unemployment
This is sample post on TX unemp.
import bokeh as bokeh
from bokeh.plotting import figure, output_file, output_notebook, show
#from bokeh.io import show, output_file
from bokeh.models import LogColorMapper
from bokeh.palettes import Viridis6 as palette
from bokeh.models import HoverTool
#bokeh.sampledata.download()
Creating C:\Users\rkvk\.bokeh directory
Creating C:\Users\rkvk\.bokeh\data directory
Using data directory: C:\Users\rkvk\.bokeh\data
Downloading: CGM.csv (1589982 bytes)
1589982 [100.00%]
Downloading: US_Counties.zip (3182088 bytes)
3182088 [100.00%]
Unpacking: US_Counties.csv
Downloading: us_cities.json (713565 bytes)
713565 [100.00%]
Downloading: unemployment09.csv (253301 bytes)
253301 [100.00%]
Downloading: AAPL.csv (166698 bytes)
166698 [100.00%]
Downloading: FB.csv (9706 bytes)
9706 [100.00%]
Downloading: GOOG.csv (113894 bytes)
113894 [100.00%]
Downloading: IBM.csv (165625 bytes)
165625 [100.00%]
Downloading: MSFT.csv (161614 bytes)
161614 [100.00%]
Downloading: WPP2012_SA_DB03_POPULATION_QUINQUENNIAL.zip (5148539 bytes)
5148539 [100.00%]
Unpacking: WPP2012_SA_DB03_POPULATION_QUINQUENNIAL.csv
Downloading: gapminder_fertility.csv (64346 bytes)
64346 [100.00%]
Downloading: gapminder_population.csv (94509 bytes)
94509 [100.00%]
Downloading: gapminder_life_expectancy.csv (73243 bytes)
73243 [100.00%]
Downloading: gapminder_regions.csv (7781 bytes)
7781 [100.00%]
Downloading: world_cities.zip (646858 bytes)
646858 [100.00%]
Unpacking: world_cities.csv
Downloading: airports.json (6373 bytes)
6373 [100.00%]
Downloading: movies.db.zip (5067833 bytes)
5067833 [100.00%]
Unpacking: movies.db
Downloading: airports.csv (203190 bytes)
203190 [100.00%]
Downloading: routes.csv (377280 bytes)
377280 [100.00%]
from bokeh.sampledata.us_counties import data as counties
from bokeh.sampledata.unemployment import data as unemployment
output_notebook()
palette.reverse()
counties = {
code: county for code, county in counties.items() if county["state"] == "tx"
}
county_xs = [county["lons"] for county in counties.values()]
county_ys = [county["lats"] for county in counties.values()]
county_names = [county['name'] for county in counties.values()]
county_rates = [unemployment[county_id] for county_id in counties]
color_mapper = LogColorMapper(palette=palette)
data=dict(
x=county_xs,
y=county_ys,
name=county_names,
rate=county_rates,
)
TOOLS = "pan,wheel_zoom,reset,hover,save"
p = figure(
title="Texas Unemployment, 2009", tools=TOOLS,
x_axis_location=None, y_axis_location=None)
hover = HoverTool()
hover.tooltips = [
("Name", "@name"), ("Unemployment rate)", "@rate%"), ("(Long, Lat)", "($x, $y)")
]
p.tools.append(hover)
p.grid.grid_line_color = None
#p.hover.point_policy = "follow_mouse"
p.patches('x', 'y', source=data,
fill_color={'field': 'rate', 'transform': color_mapper},
fill_alpha=0.7, line_color="white", line_width=0.5)
output_file("tx_unemp.html")
show(p)